1. Let us begin with a simple compound interest problem. If \(P_0 \) dollars is invested at \(r\% \) annual interest for \(t \) years, you obtain the exponential equation \(P = P_0 (1+r)^t = P_0 a^t \) where \(a \) is the growth factor and \(r \) is the annual growth rate.

We want to distinguish between an annual growth rate and a continuous growth rate.

2. Suppose you compounded your interest \(k \) times a year, instead of annually. In this case you divide the interest rate by \(k \) (i.e. use \(r/k \) for the interest rate) but multiply the number of times you compound by \(k \) (i.e. \(k \cdot t \) for the exponent). This yields the equation \(P = P_0 \left(1 + \frac{r}{k}\right)^{kt} \)

3. If \(k = 4 \) (i.e. \(P = P_0 \left(1 + \frac{r}{4}\right)^{4t} \)) you’re compounding quarterly; if \(k = 12 \) (i.e. \(P = P_0 \left(1 + \frac{r}{12}\right)^{12t} \)) you’re compounding monthly; if \(k = 365 \) (i.e. \(P = P_0 \left(1 + \frac{r}{365}\right)^{365t} \)) you’re compounding daily. But what about compounding hourly? Or compounding minutely? Or even compounding every second? This raises the question, what is the limit as \(k \) approaches infinity? (compounding continuously). In other words, what is \(\lim_{k \to \infty} P_0 \left(1 + \frac{r}{k}\right)^{kt} \)? This limit is what we call compounding continuously.

4. To evaluate this limit let \(x = \frac{k}{r} \) (or equivalently \(\frac{r}{k} = \frac{1}{x} \)). Obviously \(k \) goes to infinity if and only if \(x \) goes to infinity. Hence the limit \(\lim_{k \to \infty} P_0 \left(1 + \frac{r}{k}\right)^{kt} \) can be re-written as

\[
\lim_{x \to \infty} P_0 \left(1 + \frac{1}{x}\right)^{x r t} = P_0 \left(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \right)^t \]

Notice the limit \(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \) is 0.

5. By definition \(e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \) so \(P_0 \left(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \right)^t = P_0 e^{rt} \). So in equations of this form, \(r \) is the continuous growth (interest) rate.

6. There is faster growth with continuous compounding versus annual compounding – but not by much. Likewise continuous exponential growth is faster than annual exponential growth – but not by much.

7. **Example**: $100.00 invested at 10% interest compounded annually earns $100.00(1 + 0.1)^1 = 110.00 after one year. The same investment compounded continuously after one year equals $100.00e^{0.1\cdot1} = 110.52$. Thus continuous compounding is a little faster than annual compounding – but not by much.